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Multiple parton scattering and induced parton energy loss are studied in deeply in-

elastic scattering (DIS) off nuclei. The effect of multiple scattering of a highly off-shell

quark and the induced parton energy loss is expressed in terms of the modification

to the quark fragmentation functions. We derive such modified quark fragmentation

functions and their QCD evolution equations in DIS using the generalized factor-

ization of higher twist parton distributions. We consider double-hard and hard-soft

parton scattering as well as their interferences in the same framework. The final

result, which depends on both the diagonal and off-diagonal twist-four parton distri-

butions in nuclei, demonstrates clearly the Landau-Pomeranchuk-Migdal interference

features and predicts a unique nuclear modification of the quark fragmentation func-

tions.

I. INTRODUCTION

Hard processes in high-energy strong interactions are always localized in space-time because of

the large momentum-energy transfer. The asymptotic behavior of QCD allows one to compute

these cross sections perturbatively. Together with the factorization theorem and the experimental

information of parton distributions and fragmentation functions, hard processes in hadronic collisions

have been well understood [1]. One can then in turn use them as probes of nuclear matter as well

as hot quark-gluon plasma which is expected to be formed in high-energy nuclear collisions. In

particular, the propagation of an energetic parton and its induced energy loss has been proposed as

a probe of the properties of dense matter formed in high-energy nuclear collisions [2–4]. Based on a

model of multiple scattering and induced radiation in QCD proposed by Gyulassy and Wang (GW)

[5], recent theoretical studies [5–9] show that a fast parton will lose a significant amount of energy via

induced radiation when it propagates through a hot partonic matter. The most interesting feature of

the result is the quadratical distance dependence of the total energy loss because of the non-Abelian

nature of QCD radiation and the Landau-Pomercanchuk-Migdal (LPM) [10] interference. Such a

quadratical distance dependence is also a consequence of the GW static color-screened potential

model for multiple scattering where colors are screened but not confined. In this paper we will study

parton multiple scattering inside a nucleus where colors are confined to the size of a nucleon. In this

case parton propagation will certainly be different from that in a partonic matter and one should

expect that the parton energy loss to be related to the nucleon size or confinement scale. Parton

energy loss in eA DIS has been studied before within various models of intranuclear scattering and
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the modification of hadronization [11–15]. In this paper we will study the problem in the framework

of multiple parton scattering in perturbative QCD (pQCD).

Unlike the situation in QED, the energy loss of a parton cannot be directly measured because

partons are not the final experimentally observed particles. The total energy of a jet as traditionally

defined by a cluster of hadrons in the phase space will not change much due to medium induced

radiation because a jet so defined contains particles both from the leading parton and from the

radiated gluons. This is particularly the case if multiple scattering and induced radiation do not

dramatically change the energy profile of the jet in phase-space. It is also virtually impossible

to determine the jet energy event by event because of the large background and its fluctuation

in heavy-ion collisions. One then has to resort to particle distributions within a jet and study

the effect of parton energy loss by measuring the modification of the particle distribution due to

multiple scattering and induced radiation [4]. One such distribution is the fragmentation function

of the produced parton, Da→h(z, µ2), where z is the fractional energy of the parton a carried by the

produced particles h. Unlike the situation that has been considered in most of the recent theoretical

studies [5–7] of parton energy loss of an on-shell parton during its propagation through medium,

partons produced in hard processes are normally far off-shell characterized by the momentum scale

µ2. Final-state radiation of these off-shell partons in free space, such as in e+e− annihilation, leads

to the µ-dependence of the fragmentation functions as given by Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) [16] QCD evolution equations,

∂Dq→h(zh, µ
2)

∂ lnµ2
=
αs(µ

2)

2π

∫ 1

zh

dz

z

[
γq→qg (z)Dq→h(zh/z, µ

2) + γq→gq (z)Dg→h(zh/z, µ
2)
]
, (1)

∂Dg→h(zh, µ
2)

∂ lnµ2
=
αs(µ

2)

2π

∫ 1

zh

dz

z




2nf∑

q=1

γg→qq̄(z)Dq→h(zh/z, µ
2) + γg→gg (z)Dg→h(zh/z, µ

2)


 (2)

where γa→bc(y) are the splitting functions of the corresponding radiative processes [17]. When a

parton is produced in a medium, it will suffer multiple scattering and induced radiation that will

then lead to medium modification of the DGLAP evolution of the parton fragmentation functions.

In this paper we will derive such modified evolution equations for parton fragmentation functions in

the simplest case of deeply inelastic eA scattering (DIS). Multiple scattering and induced radiation

suffered by the leading quark in this case will give rise to an additional term in the DGLAP evolution

equations. As a consequence, the modified fragmentation functions become softer. This can be

directly translated into the energy loss of the leading quark.

The study here is very similar to that by Luo, Qiu and Sterman (LQS) [18] on nuclear depen-

dence of jet cross section in deeply inelastic scattering. The difference is that they considered large

transverse momentum jet production whereas we will concentrate on soft gluon emission which is

responsible for the DGLAP evolution equations of fragmentation functions. Depending on the frac-

tional momentum carried by the second parton in the case of double parton scattering, one can

categorize the processes into soft-hard, hard-hard and their corresponding interferences. In their

study of large transverse momentum jet production, LQS only considered soft-hard and hard-hard

processes, because the interference terms become negligible as we will show. Since we have to

consider soft gluon emission, the interference terms are very important and they will cancel contri-
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butions from hard-hard and hard-soft processes in the limit of collinear emission (or zero transverse

momentum). In this paper, we will include all these processes and treat them in the same manner.

Utilizing the generalized factorization of higher-twist parton distributions, we find that each process

in the double scattering probes different twist-four parton correlation of the nuclear medium. As a

result of the sum of all contributions, the additional term in the modified DGLAP evolution equation

is proportional to the combined twist-four matrix element,

1

4π

∫
dy−dy−1 dy

−
2 θ(−y−2 )θ(y− − y−1 )(1− eixLp+(y−1 −y

−))(1− e−ixLp+y−2 )

ei(xB+xL)p+y− 〈A|ψ̄q(0)γ−Fα+(y−2 )F+
α (y−1 )ψq(y

−)|A〉, (3)

where

xL = µ2/2p+q−z(1 − z), (4)

with µ the typical factorization scale and z the fractional momentum of the emitted gluon. In this

paper, we denote the four-momentum of the virtual photon and the target nucleon in DIS as

q = [−Q2/2q−, q−,~0⊥],

p = [p+, 0,~0⊥], (5)

respectively. The Bjorken variable is then xB = Q2/2p+q−. In the above matrix element, one can

identify 1/xLp
+ = 2q−z(1− z)/µ2 as the formation time of the emitted gluons. For large formation

time as compared to the nuclear size, the above matrix element vanishes, demonstrating a typical

LPM interference effect. This is because the emitted gluon (with long formation time) and the

leading quark are still a coherent system when they propagate through the nucleus. Additional

scattering will not induce more gluon radiation, thus limiting the energy loss of the leading quark.

Since our approach allows us to relate the energy loss of a fast parton to the parton correlations

in the medium, the final results will be sensitive to the properties of the medium through which a

produced parton propagates. In particular, the medium-dependence of the above matrix elements

in a deconfined quark-gluon plasma will be very different from that in an ordinary nuclear medium.

Therefore, the parton energy loss and its dependence on the medium size in hadronic matter are

expected to differ from that in a quark-gluon plasma. This simply reflects the different parton

correlations in different types of media.

The results of the present study were already reported in Ref. [19]. We will provide a detailed

derivation and discussion in this paper. The rest of this paper is organized as follows: In the next

section, we give a brief overview of the framework of our study including generalized factorization

of twist-four parton distributions in hard processes. In Section III we will discuss in detail the

calculation of different contributions to soft gluon emission involving double parton scattering. To

simplify the calculation, we will use the techniques of helicity amplitude with soft gluon approxi-

mation (z << 1). In Section IV, we will consider virtual corrections from unitary constraints. We

will then define, in Section V, the effective parton fragmentation functions in deeply inelastic eA

collisions and derive the modified DGLAP evolution equations. We will also calculate the average

energy loss suffered by the leading quark. Finally, in Section VI, we will discuss our results and their

implications in other hard processes.
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II. GENERAL FORMALISM

Consider the following semi-inclusive process in the deeply inelastic lepton-nucleus scattering,

e(L1) + A(p) −→ e(L2) + h(`h) + X , (6)

where L1 and L2 are the four-momenta of the incoming and the outgoing leptons respectively, p

is the momentum per nucleon for the nucleus with the atomic number A, and `h is the observed

hadron momentum. The momentum of the virtual photon (γ∗) is q = L2 − L1.

The differential cross section of semi-inclusive processes in DIS with an observed final state hadron

`h can be expressed as

EL2E`h
dσhDIS

d3L2d3`h
=
α2

EM

2πs

1

Q4
LµνE`h

dW µν

d3`h
, (7)

where s = (p + L1)2 is the total invariant mass of the lepton-nucleon system. The leptonic tensor

Lµν is given by

Lµν =
1

2
Tr(γ · L1γµγ · L2γν) . (8)

The semi-inclusive hadronic tensor E`hdW
µν/d3`h is defined as,

E`h
dW µν

d3`h
=

1

2

∑

X

〈A|Jµ(0)|X,h〉〈X,h|Jν(0)|A〉2πδ4(q + p− pX − `h) , (9)

where
∑

X runs over all possible intermediate states and Jµ is the hadronic electromagnetic (EM)

current, Jµ = eqψ̄qγµψq .
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FIG. 1. Diagram representing the factorized form of the semi-inclusive hadronic tensor Wµν .

In the parton model with collinear factorization approximation, one can in general factorize the

semi-inclusive cross section into a parton fragmentation function and the partonic cross section. By

factorizing the parton fields out of the EM current as

Jµ(0) ≡
∑

c,α

J̃µc,α(0)φ̂αc (0) ≡
∑

c,α

φ̂α†c (0)J̃µ†c,α(0) , (10)

one can express the semi-inclusive hadronic tensor as
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dW µν

dzh
=
∑

α,β,c

z2
hd̂

αβ
c→h(zh, `h)

∑

X

〈A|J̃µc,α(0)|X〉〈X|J̃ν†c,β(0)|A〉2πδ(`2c) , (11)

as illustrated by Fig. 1, where α, β are indices (spinor for quarks and Lorentz for gluons) of the

partonic field of species c with momentum `c, and d̂αβc→h(zh, `h), related to the fragmentation function,

is defined as

d̂αβc→h(zh, `h) ≡
∑

S

∫
d4`c
(2π)4

d4y〈0|φ̂αc (0)|h, S〉〈h, S|φ̂β†c (y)|0〉e−i`c ·yδ(zh −
`−h
`−c

). (12)

After such factorization, one only needs to calculate the cross sections of partonic hard processes.

The fragmentation functions defined in terms of parton matrix elements in the above equation are

nonperturbative and can only be obtained via experimental measurements. In addition, one can

also factorize out the parton distributions inside nuclei (or nucleons). Such factorization has been

proven to all orders and in the leading twist [20].

In the infinite-momentum frame as defined by Eq. (5), the dominant momentum component of

the leading parton in a single jet event is the minus component. Therefore, we define the momentum

fraction carried by a produced hadron as zh = `−h /`
−
c .

A. Leading Twist Contributions
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FIG. 2. Lowest order process that contributes to H (0)µν .

The leading-twist contribution to DIS to the lowest order (O(α0
s)) comes from a single hard γ∗+q

scattering as illustrated in Fig. 2. The semi-inclusive hadronic tensor dWµν/dzh can be factorized

as [20]

dW
S(0)
µν

dzh
=
∑

q

∫
dxfAq (x)H(0)

µν (x, p, q)Dq→h(zh) , (13)

where fAq (x) is the quark distribution as defined by

fAq (x) ≡
∫

d4k

(2π)4
d4yeik·yδ(x− k+

p+
)〈A|ψ̄q(0)

γ+

2p+
ψq(y)|A〉

=

∫
dy−

2π
eixp

+y− 1

2
〈A|ψ̄q(0)γ+ψq(y

−)|A〉 . (14)
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Here quark fragmentation function Dq→h(zh) is defined as

Dq→h(zh) ≡ z3
h

2
dq→h(zh, `h) ≡ z3

h

4`−h
Tr[γ−d̂q→h(zh, `h)], (15)

d̂αβq→h(zh, `h) ≡
∑

S

∫
d4`q
(2π)4

d4ye−i`q ·yδ(zh −
`−h
`−q

)〈0|ψβq (0)|h, S〉〈h, S|ψ̄αq (y)|0〉

=
∑

S

`−h
z2
h

∫
dy+

2π
e−i`

−
h
y+/zh〈0|ψβq (0)|h, S〉〈h, S|ψ̄αq (y+)|0〉 . (16)

The hard part of γ∗ + q partonic scattering is

H(0)
µν = e2

q

1

2
Tr(γ · pγµγ · (q + xp)γν) (2π)δ[(q + xp)2]

= 4πe2
q

[
xBe

L
µν −

1

2
eTµν

]
δ(x − xB) , (17)

where momentum conservation gives `q = xp+q and by definition `−h = zh`
−
q = zhq

−. The transverse

and longitudinal tensors are defined as

eTµν = gµν −
qµqν
q2

,

eLµν =
1

p · q [pµ −
p · q
q2

qµ][pν −
p · q
q2

qν] . (18)

Note that a sum and an average over color indices are implied in the quark distribution and fragmen-

tation function, respectively. In Eq. (15), we used the collinear approximation in the unpolarized

fragmentation functions,

d̂q→h(zh, `h) ≈ 1

2
dq→h(zh, `h)γ · `h + · · · ,

≈ zh
2
dq→h(zh, `h)γ · `q + · · · , (19)

while other higher-twist terms are neglected. We will use such a collinear approximation throughout

this paper even in the case of double scattering. We will also neglect other higher-twist contributions

to the fragmentation function that are independent of the nuclear size.
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FIG. 3. The hard partonic part of next-to-leading order process that contributes to H
(1)
µν .

At the next-to-leading order O(αs), the dominant (in leading log approximation) real radiative

contribution to the fragmentation process in an axial gauge (A− = 0) comes from the final state
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radiation. Since we are only interested in the collinear behavior of the radiative corrections in

order to study the evolution equation of the fragmentation functions, we will keep only the leading

(divergent) contribution when the gluon’s transverse momentum vanishes(with respect to q + xp),

i.e., `T → 0. Using the same collinear approximation, one finds the leading contribution from the

radiative correction (for `2T up to a factorization scale µ2) to the quark fragmentation process,

dW
S(1)q
µν

dzh
=
∑

q

∫
dxfAq (x)

∫ 1

zh

dz

z
Dq→h(zh/z)H

(1)q
µν (x, p, q, z) , (20)

where zh = `−h /q
− and z = `−q /q

− are the fractional momentum carried by hadron and the final

quark, respectively. The factorized form in Eq. (20) is quite general for all processes involving gluon

radiation in the final state. It is then enough to calculate the partonic hard part H
(1)q
µν (x, p, q, z) as

illustrated in Fig. 3,

H(1)q
µν (x, p, q, z) = H(0)

µν (x, p, q)

∫ µ2

0

d`2T
`2T

αs
2π
CF

1 + z2

1− z , (21)

where the color factor is CF = (N2
c −1)/2Nc = 4/3. Since we neglect the non-leading-log terms, the

tensor structure of H
(1)q
µν remains the same as H

(0)
µν in Eq. (17). Similarly, if the final hadron comes

from the gluon fragmentation, the contribution is

dW
S(1)g
µν

dzh
=
∑

q

∫
dxfAq (x)H(0)

µν (x, p, q)

∫ µ2

0

d`2T
`2T

αs
2π

∫ 1

zh

dz

z
CF

1 + (1− z)2

z
Dg→h(zh/z) . (22)

Here z = `−g /q
− and Dg→h(zh) is the gluon fragmentation function defined as

Dg→h(zh) ≡ z2
h

2
εµν(`g)dµνg→h(zh, `h)

= − z2
h

2`−h

∑

S

∫
dy+

2π
e−i`

−
h
y+/zh 〈0|F−µ(0)|S, h〉〈S, h|F−µ(y+)|0〉 , (23)

where dµνg→h(zh, `h) is given by Eq. (12) for gluon fields and

εµν (`g) =
∑

λ=1,2

εµ(`g, λ)εν(`g , λ) , (24)

with εµ(`g , λ) being the polarization vector of a gluon in an axial gauge.

There are both infrared and collinear divergences in Eq. (21) and Eq. (22). The infrared diver-

gences come from the phase space where the gluon’s fractional momentum goes to zero. These

divergences will be canceled by the virtual corrections in the quark self-energy diagrams as we will

discuss later. The collinear divergences when `T → 0 will be absorbed into the renormalized frag-

mentation functions and are responsible for the evolution of the quark fragmentation function with

respect to the factorization scale µ. Summing up all the contributions from Eqs. (13), (20) and (22),

one has

dW S
µν

dzh
=
∑

q

∫
dxfAq (x)H(0)

µν (x, p, q)Dq→h(zh, µ
2) , (25)

Dq→h(zh, µ
2) ≡ Dq→h(zh) +

∫ µ2

0

d`2T
`2T

αs
2π

∫ 1

zh

dz

z

[
CF

1 + z2

1− z Dq→h(zh/z)

+ CF
1 + (1− z)2

z
Dg→h(zh/z)

]
+ virtual corrections , (26)
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where the renormalized quark fragmentation function Dq→h(zh, µ
2) satisfies the DGLAP evolution

equation in Eq. (1) after inclusion of the virtual corrections. The virtual corrections have to be

included to ensure unitarity and infrared safety of the final result. We will discuss the virtual

contributions later in this paper.

B. Higher Twist Contributions

In a nuclear medium, the outgoing quark in DIS may experience additional scattering with other

partons from the nucleus. The additional scattering may induce additional gluon radiation and cause

the leading quark to lose energy. Such induced gluon radiation will effectively give rise to additional

terms in the evolution equation leading to modification of the fragmentation functions in a medium.

These additional terms from multiple scattering are always non-leading-power contributions. There

are many next-leading-twist contributions to the semi-inclusive hadronic tensor in DIS. One type

of contribution involves non-leading-twist matrix elements of parton distributions in the nucleus

which in general are related to two-parton correlations. Since two-parton correlations in a nucleus

can involve partons from different nucleons in the nucleus, they are proportional to the size of the

nucleus and thus are enhanced by a nuclear factor A1/3 as compared to two-parton correlations in a

nucleon. In this paper we will consider only those non-leading-twist contributions that are enhanced

by the nuclear factor. We will neglect those contributions that are not enhanced by the nuclear

medium. They are in general not related to multiple parton scattering in the nucleus.
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FIG. 4. A diagram for quark-gluon rescattering processes with three possible cuts, central(C), left(L) and

right(R).

For large Q2 in DIS, it may suffice to consider only double scattering. The contributions of double

scattering can be treated as a non-leading-power correction to the single scattering. We will work

in a framework [21] in which the twist-four parton distributions are factorizable. We will simply

apply such factorization of twist-four parton distributions to the study of semi-inclusive processes

in DIS. In general, the twist-four contributions can be expressed as the convolution of partonic hard

parts and four-parton matrix elements [18]. At the lowest order (processes without gluon radiation)

in this framework, rescattering with collinear gluons gives the eikonal contribution to the gauge-

invariant leading-twist and lowest-order result in Eq. (13), assuming collinear factorization of the

quark fragmentation function. As we will show later, rescattering with another quark in the leading
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order will contribute to the semi-inclusive cross section but not to the renormalization equation

because there is no collinear divergency. Therefore, we first concentrate on processes involving

rescattering with gluons. For next-to-leading order processes (with gluon radiation) involving a

secondary scattering with another gluon from the nucleus, shown in Fig. 4 as an example, the

double scattering contributions to dWµν/dzh can be expressed as [18]

dWD
µν

dzh
=
∑

q

∫ 1

zh

dz

z
Dq→h(zh/z)

∫
dy−

2π
dy−1 dy−2

d2yT
(2π)2

d2kTH
D

µν(y−, y−1 , y
−
2 , kT , p, q, z);

× e−i~kT ·~yT 1

2
〈A|ψ̄q(0) γ+ A+(y−2 , 0T )A+(y−1 , yT )ψq(y

−)|A〉 . (27)

Here H
D

µν(y−, y−1 , y
−
2 , kT , p, q, z) is the Fourier transform of the partonic hard part

H̃µν(x, x1, x2, kT , p, q, z) in momentum space,

H
D
µν(y−, y−1 , y

−
2 , kT , p, q, z) =

∫
dx

dx1

2π

dx2

2π
eix1p

+y−+ix2p
+y−1 +i(x−x1−x2)p+y−2

×H̃D
µν(x, x1, x2, kT , p, q, z) , (28)

where kT is the relative transverse momentum carried by the second parton in the double scattering.

Values of the momentum fractions x, x1, and x2 are fixed by δ-functions and poles in the partonic

hard part. They normally depend on kT .

In order to pick up the next-leading-twist contribution, we expand the partonic hard part around

kT = 0,

H
D

µν(y−, y−1 , y
−
2 , kT , p, q, z) = H

D

µν(y−, y−1 , y
−
2 , kT = 0, p, q, z)

+
∂H

D

µν

∂kαT

∣∣∣∣∣
kT=0

kαT +
1

2

∂2H
D

µν

∂kαT∂k
β
T

∣∣∣∣∣
kT=0

kαT k
β
T + . . . . (29)

This is known as collinear expansion [22], On the right-hand-side of Eq. (29), the first term gives

the eikonal contribution to the leading-twist results. It does not correspond to the physical double

scattering, but simply makes the matrix element in a single scattering gauge invariant. The second

term for unpolarized initial and final states vanishes after being integrated over kT . The third term

will give a finite contribution to the double scattering process. Substituting Eq. (29) into Eq. (27),

and integrating over d2kT and d2yT , we obtain

dWD
µν

dzh
=
∑

q

∫ 1

zh

dz

z
Dq→h(zh/z)

∫
dy−

2π
dy−1 dy

−
2

1

2
〈A|ψ̄q(0) γ+ F +

σ (y−2 )F+σ(y−1 )ψq(y
−)|A〉

×
(
−1

2
gαβ

)[
1

2

∂2

∂kαT∂k
β
T

H
D

µν(y−, y−1 , y
−
2 , kT , p, q, z)

]

kT=0

, (30)

where kαTA
+kβTA

+ are converted into field strength Fα+F β+ by partial integrations.

III. QUARK-GLUON DOUBLE SCATTERING

In this section we calculate the hard part of parton rescattering with gluons. We consider processes

with a quark and a gluon in the initial state. In these processes, there is first a hard photon-quark

9



scattering. The produced parton from the first hard scattering then has a second scattering with

another initial gluon from the nucleus. We refer to such processes as quark-gluon double scattering

processes. We defer the calculation of virtual corrections to the latter part of this paper. There are

a total of 23 cut diagrams corresponding to 3 different double scattering processes, their interfer-

ences, and the interferences between single scattering and 7 different triple scattering processes (see

Appendix). We use the process shown in Fig. 4 with three different cuts as an example to outline

the steps that are essential to evaluate the hard part of double scattering.

Since we are interested in the leading log behavior of the fragmentation functions, we will only

retain the leading contributions in the limit of `T → 0 (`T being gluons transverse momentum) and

neglect contributions that are finite when `T = 0.

A. Hard vs Soft Rescattering

Following the collinear approximation involving leading twist-4 parton distributions, as outlined

in Ref. [18], the hard partonic part in Fig. 4 with a central cut is

H
D

C µν(y−, y−1 , y
−
2 , kT , p, q, z) =

∫
dx
dx1

2π

dx2

2π
eix1p

+y−+ix2p
+y−1 +i(x−x1−x2)p+y−2

∫
d4`

(2π)4

× 1

2
Tr
[
p · γγµpσpρĤσργν

]
2πδ+(`2) δ(1− z − `−

q−
) . (31)

Here,

Ĥσρ =
CF
2Nc

g4 γ · (q + x1p)

(q + x1p)2 − iε γα
γ · (q + x1p− `)

(q + x1p− `)2 − iε γσγ · `q γρ

× εαβ(`)
γ · (q + xp− `)

(q + xp− `)2 + iε
γβ

γ · (q + xp)

(q + xp)2 + iε
2πδ+(`2q) , (32)

and

εαβ(`) = −gαβ +
nα`β + nβ`α

n · ` +
nαnβ

(n · `)2
`2 (33)

is the polarization tensor of a gluon propagator in an axial gauge (n · A = 0) with n = [1, 0−,~0⊥]

and `, `q = q + (x1 + x2)p + kT − ` are the 4-momenta carried by the gluon and the final quark,

respectively. z = `−q /q
− is the fraction of longitudinal momentum (the large minus component)

carried by the final quark.

To simplify the calculation of the trace part of Ĥσρ and extract the leading contribution in the

limit `T → 0 and kT → 0, we again use the collinear approximation,

pσĤσρp
ρ ≈ γ · `q

1

4`−q
Tr
[
γ−pσĤσρp

ρ
]
. (34)

The two longitudinal components in the `-integration are fixed by the two δ-functions in Eq. (31)

and the remainder becomes d`2T/(4π)2. To carry out the integration over x, x1 and x2, we rewrite

the δ-function in Eq. (32) as

δ+(`2q) =
1

2p+q−z
δ(x1 + x2 − xL − xD − xB) , (35)

10



where xB = Q2/2p+q− is the Bjorken variable and

xL =
`2T

2p+q−z(1− z) , xD =
k2
T − 2~kT · ~̀T

2p+q−z
. (36)

With the help of the on-shell condition `2q = 0 and `2 = 0 in the δ-functions, one can also simplify

the variables of the propagators in Eq. (32):

(q + xp)2 = 2p+q−(x− xB) , (q + xp− `)2 = 2p+q−z(x− xL − xB) ,

(q + x1p)
2 = 2p+q−(x1 − xB) , (q + x1p− `)2 = 2p+q−z(x1 − xL − xB) . (37)

The integration over x, x1 and x2 can now be cast in the form

IC(y−, y−1 , y
−
2 , `T , kT , p, q, z) =

∫
dx
dx1

2π

dx2

2π

eix1p
+y−+ix2p

+y−1 +i(x−x1−x2)p+y−2

(x1 − xB − iε)(x1 − xL − xB − iε)

· δ(x1 + x2 − xL − xD − xB)

(x− xL − xB + iε)(x− xB + iε)
. (38)

Two of the above integrations can be carried out by contour integration. There are four possible poles

in the denominators and two of them are used to obtain the residues of the contour integration. There

are four possible choices for the pair of poles representing subprocesses with different kinematics.

When we choose the poles

x = xB + xL , x1 = xB + xL , (39)

which is the momentum fraction carried by the initial quark, the momentum fraction carried by the

initial gluon in the rescattering is x2 = xD, which vanishes when kT → 0 according to the definition

in Eq. (36). In this case, the final gluon is produced via the final state radiation of the hard photon-

quark scattering. After the final state radiation, the quark becomes on-shell and encounters another

scattering with a very soft gluon. This subprocess corresponds to rescattering with a soft gluon after

a hard collision and is normally referred to as a hard-soft process [18]. On the other hand, if we

choose the poles,

x = xB , x1 = xB , (40)

the momentum fraction carried by the initial gluon in the rescattering is x2 = xL+xD, which is finite

(xL) even when kT → 0. We call this type of rescattering hard and refer the corresponding double

scattering as double-hard processes. According to such a choice of a pair of poles, the quark becomes

on-shell immediately after the hard photon-quark scattering. The gluon radiation is actually induced

by the hard secondary quark-gluon scattering. It is thus produced by the initial state radiation of

the secondary scattering. The other two combinations of the poles,

x = xB + xL , x1 = xB ;

x1 = xB + xL , x = xB, (41)

represent the interferences between hard-soft and double-hard processes. Using the relations imposed

by the δ-function, x2 = xB + xL + xD − x1, and the momentum conservation, x3 = x1 + x2 − x,

11



one can verify that there is a momentum transfer xL between the initial quark and gluon fields. If

we consider the quark and gluon come from different nucleons inside the nucleus, this means that

there is a momentum transfer between different nucleons in these interferences processes. Such an

observation will become important when we study later the parton matrix elements involved.

One can easily find out the residues of the contour integrations with the above four possible choices

of poles. After making a change of variable x1 + x2 − xL − xD → x, one finds

IC(y−, y−1 , y
−
2 , `T , kT , p, q, z) =

∫
dx
δ(x− xB)

x2
L

IC(y−, y−1 , y
−
2 , `T , kT , x, p, q, z) ;

IC(y−, y−1 , y
−
2 , `T , kT , x, p, q, z) = ei(x+xL)p+y−+ixDp

+(y−1 −y
−
2 )θ(−y−2 )θ(y− − y−1 )

× (1− e−ixLp+y−2 )(1− e−ixLp+(y−−y−1 )) . (42)

In the above contributions, the interferences between hard-soft and double-hard processes have the

negative sign relative to the hard-soft and double-hard contributions. Previous studies [18,23] have

considered only hard-soft and double-hard processes, but neglected the interferences. For large `T

or xL, this is justified because the interference terms will vanish due to the oscillation of the phase

factors in the integration of y−1 and y−2 over the size of the whole nucleus. Note that in the double-

hard term the phase factor exp[ixLp
+(y−1 − y−2 )] does not vanish after integration over y−1 and y−2 ,

because color confinement requires that |y−1 − y−2 | remain the size of a nucleon. We will discuss

other consequences of color confinement later in this paper. At the `T → 0 limit, one can no longer

neglect the interference terms because they exactly cancel the contributions from the hard-soft and

double-hard processes. This was pointed out in Ref. [23]. However, our final results, for the first

time explicitly demonstrate such cancellation. In the latter part of this section, we will discuss the

physical implications of such cancellation and its connection with the LPM interference effect. It

will help us to reorganize our final results.

Because of the collinear (or leading log) approximation, the tensor structure of the double scat-

tering contributions is generally the same as in the leading order single scattering,

H
D
µν(y−, y−1 , y

−
2 , kT , p, q, z) =

∫
dxH(0)

µν (x, p, q) H
D

(y−, y−1 , y
−
2 , kT , x, p, q, z) . (43)

After completing the trace in Eq. (34) and using the results of the contour integration in Eq. (42),

we have the contributions from Fig. 4 with a central cut,

H
D

C (y−, y−1 , y
−
2 , kT , x, p, q, z) =

∫
d`2T
`2T

αs
2π

CF
1 + z2

1− z

× 2παs
Nc

IC(y−, y−1 , y
−
2 , `T , kT , x, p, q, z) , (44)

where IC is given in Eq. (42) and H
(0)
µν in Eq. (17).

In addition to the central-cut diagram, we also need to consider asymmetrical-cut diagrams in

Fig. 4 that represent interferences between single and triple scattering. The trace part is exactly

the same as in the central-cut diagram. The differences are that one of the quark propagators is

replaced by the cut propagator in the central-cut diagram. In addition, each of the asymmetrical-

cut diagrams has only two possible pairs of poles, whereas there are four choices in the central-cut

diagram. After similar contour integration, we have for the left-cut diagram

12



IL(y−, y−1 , y
−
2 , `T , kT , p, q, z) =

∫
dx
dx1

2π

dx2

2π

eix1p
+y−+ix2p

+y−1 +i(x−x1−x2)p+y−2

(x1 − xB − iε)(x1 − xL − xB − iε)

· δ(x− xB − xL)

(x1 + x2 − xB − xL − xD − iε)(x− xB + iε)

=

∫
dx
δ(x− xB)

x2
L

IL(y−, y−1 , y
−
2 , `T , kT , x, p, q, z) ;

IL(y−, y−1 , y
−
2 , `T , kT , x, p, q, z) = −ei(x+xL)p+y−+ixDp

+(y−1 −y
−
2 )θ(y−1 − y−2 )θ(y− − y−1 )

× (1 − e−ixLp+(y−−y−1 )) . (45)

In the second step of the above equation we have made a change of variable x − xL → x. On the

left-hand side of the left-cut diagram, the kinematics of the final state gluon radiation in the single

hard photon-quark scattering requires the quark line to be off-shell, i.e., x = xB . Similarly, on the

right-hand side, only one of the quark propagators connecting the gluon radiation vertex can be on

shell. This leads to two possible pair of poles in the propagators,

x1 = xB + xL , x2 = xD ;

x1 = xB , x2 = xL + xD , (46)

giving rise to the two contributions in Eq. (45). They correspond to soft and hard first quark-gluon

rescattering, respectively, in the triple scattering process. In both cases, x3 = xD. So the second

quark-gluon rescattering in the triple scattering process on the right-hand side of the left-cut diagram

is always soft.

Similarly, one can also obtain for the right-cut diagram of Fig. 4,

IR(y−, y−1 , y
−
2 , `T , kT , x, p, q, z) = −ei(x+xL)p+y−+ixDp

+(y−1 −y
−
2 )θ(−y−2 )θ(y−2 − y−1 )

× (1− e−ixLp+y−2 ) . (47)

Other coefficients of the asymmetrical-cut diagrams are exactly the same as in the central-cut dia-

gram given in Eq. (44).
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FIG. 5. A diagram for the gluon-gluon rescattering process.

Since QCD is a non-Abelian gauge theory, rescattering can also happen between radiated and

target gluons. Shown in Fig. 5 is an example that involves gluon-gluon rescattering. The contribution

to the hard part of double scattering from this central cut diagram is
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H
D

Fig.5(y−, y−1 , y
−
2 , kT , x, p, q, z) =

∫
d`2T

( ~̀T − ~kT )2

αs
2π

CA
1 + z2

1− z

× 2παs
Nc

IFig.5(y−, y−1 , y
−
2 , `T , kT , x, p, q, z) ,

IFig.5(y−, y−1 , y
−
2 , `T , kT , x, p, q, z) = ei(x+xL)p+y−+ixDp

+(y−1 −y
−
2 )θ(−y−2 )θ(y− − y−1 )

× [eixDp
+y−2 /(1−z) − e−ixLp+y−2 ]

× [eixDp
+(y−−y−1 )/(1−z) − e−ixLp+(y−−y−1 )] , (48)

which has a structure very similar to the contribution in Eq. (42) and (44) from the central-cut

diagram in Fig. 4. The four different terms correspond similarly to the hard-soft, double-hard

scattering and their interferences. In the hard-soft process, the emitted gluon encounters another

scattering with a very soft target gluon after it is produced in the final state radiation of the hard

photon-quark scattering. Note that the initial quark has momentum fraction x = xB+xL+xD/(1−z)
while the soft gluon carries momentum fraction x2 = xD − xD/(1− z). In the double-hard process,

the gluon is induced by the secondary hard scattering, similar to the quark-gluon rescattering, but

in this case via a three-gluon vertex. The kT dependence of the cross section is typical of the

gluon-gluon interaction.
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FIG. 6. A diagram for the interference between quark-gluon and gluon-gluon rescattering.

As another example, we illustrate the interference between quark-gluon and gluon-gluon rescat-

tering processes in Fig. 6. The contribution from the central-cut diagram is,

H
D
Fig.6(y−, y−1 , y

−
2 , kT , x, p, q, z) =

∫
d`2T

~̀
T · ( ~̀T − ~kT )

`2T ( ~̀T − ~kT )2

αs
2π

CA
2

1 + z2

1− z

× 2παs
Nc

IFig.6(y−, y−1 , y
−
2 , `T , kT , x, p, q, z) ,

IFig.6(y−, y−1 , y
−
2 , `T , kT , x, p, q, z) = −ei(x+xL)p+y−+ixDp

+(y−1 −y
−
2 )θ(−y−2 )θ(y− − y−1 )

× [eixDp
+y−2 /(1−z) − e−ixLp+y−2 ][1− e−ixLp+(y−−y−1 )] . (49)

Notice that all interference terms in Eqs. (45-47) and (49) have the opposite sign as compared to

symmetrical diagrams. The calculation of the other diagrams with all possible cuts is tedious but

similarly straightforward. The splitting functions in all quark-gluon double scattering and their

interferences have the same form in z as the q → qg splitting function in the single scattering case.

The residues of the contour integrations in different processes are different and the resultant different

phase factors are essential to give rise to the interesting physical consequences as we discuss below.
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B. LPM Interference

Before we list the results of all processes, it is helpful to discuss first the underlying physics in

gluon radiation induced by quark-gluon double scattering. As we have seen in the calculation of

the contributions from diagrams in Figs. 4-6, the so-called hard-soft processes correspond to the

case where the gluon radiation is induced by the hard scattering between the virtual photon and an

initial quark with momentum fraction xB. The quark is knocked off-shell by the virtual photon and

becomes on-shell again after radiating a gluon. Afterwards the quark or the radiated gluon will have

a secondary scattering with another soft gluon from the nucleus. We denote such a hard-soft process

by the diagram in Fig. 7, where the off-shell quark is marked by a filled circle. In the double hard

processes, on the other hand, the quark is on-shell after the first hard scattering with the virtual

photon. The gluon radiation is then induced by the scattering of the quark with another gluon that

carries finite momentum fraction xL + xD. We denote such hard rescatterings by the diagram in

Fig. 8 where an off-shell parton is again marked by a filled circle.

We define the formation time of the gluon radiation as

τf ≡
2q−z(1− z)

`2T
. (50)

For very collinear (`T → 0) gluon radiation the formation time can become much larger than the rel-

ative distance between the two scattering. Then the two radiation processes should have destructive

interference, leading to the LPM interference effect. One can see that our results [Eqs. (42), (45),

(47), (48) and (49)] have a clear manifest of such an LPM interference effect due to the cancellation

by the interferences between hard-soft and double hard scattering.
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FIG. 7. The diagrammatical representation of hard-soft processes. The off-shell quark line is marked by
a filled circle.
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FIG. 8. The diagrammatical representation of hard rescattering processes. The off-shell parton lines are
marked by a filled circle.

We now reorganize the contributions of different processes according to the above classification of

hard-soft and double hard rescattering. We will list our complete calculation of quark-gluon double

scattering in the following. To help understand the reorganization of different processes we provide
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in the Appendix all the radiation amplitudes induced by single, double and triple scattering. There

we use the approach of helicity amplitudes for high-energy parton scattering and the results are the

same as our complete calculation in the limit of soft radiation (zg = 1− z → 0).
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FIG. 9. Central-cut diagrams for double-hard
(a), hard-soft (b) processes and their interfer-
ences (c) and (d). The diagramatical representa-
tion of the soft and hard rescattering are shown
in Fig. 7 and 8.
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FIG. 10. Right-cut diagrams that represent

interferences between single and triple scatter-
ing. The triple scattering processes involve dou-
ble hard and soft (a-c) or hard and double soft
(d-e) processes. The diagramatical representa-
tion of the soft and hard rescattering are shown
in Fig. 7 and 8.

All the central-cut diagrams are shown in Fig. 9. The contributions from double-hard (Fig. 9a)

and hard-soft scattering (Fig. 9b) are,
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H
D

CH =

∫
d`2T

αs
2π

1 + z2

1− z e
i(x+xL)p+y−+ixDp

+(y−1 −y
−
2 ) 2παs

Nc
θ(−y−2 )θ(y− − y−1 )

× CA
k2
T

`2T ( ~̀T − ~kT )2
e−ixLp

+(y−−y−1 +y−2 ) , (51)

H
D

CS =

∫
d`2T

αs
2π

1 + z2

1− z e
i(x+xL)p+y−+ixDp

+(y−1 −y
−
2 ) 2παs

Nc
θ(−y−2 )θ(y− − y−1 )

×
{
CF

1

`2T
+ CA

1

( ~̀T − ~kT )2
eixDp

+(y−−y−1 +y−2 )/(1−z)

− CA
2

~̀
T · ( ~̀T − ~kT )

`2T ( ~̀T − ~kT )2

[
eixDp

+y−2 /(1−z) + eixDp
+(y−−y−1 )/(1−z)

]}
, (52)

respectively. As we have discussed earlier, the gluon radiation in the double-hard scattering is

induced by the rescattering of an on-shell quark with another hard gluon. Therefore the contribution

has almost the same form as obtained by Gunion and Bertsch [24](GB) for soft gluon bremsstrahlung

induced by a single elastic scattering of on-shell quarks, except for the phase factors and the splitting

function which gives the GB result in the soft radiation limit (zg = 1− z → 0). In the processes we

consider here, the gluon radiation can also be induced by the first hard scattering that produces the

quark jet. In these so-called hard-soft processes, the final quark or gluon then has a second scattering

with another soft gluon from the nucleus. In Eq. (52), the first term comes from quark rescattering,

the second term from gluon rescattering and the last two terms come from the interferences between

the first two processes.

There are also two interferences between double hard and hard-soft scattering as shown in Figs. 9c

and 9d. Their contributions are,

H
D
CI1 =

∫
d`2T

αs
2π

1 + z2

1− z e
i(x+xL)p+y−+ixDp

+(y−1 −y
−
2 ) 2παs

Nc
θ(−y−2 )θ(y− − y−1 )

× (−)

{
CA
2

~kT · ( ~kT − ~̀
T )

`2T ( ~̀T − ~kT )2
+ CA

~kT · ~̀T
`2T ( ~̀T − ~kT )2

eixDp
+y−2 /(1−z)

}
e−ixLp

+(y−−y−1 ) , (53)

H
D
CI2 =

∫
d`2T

αs
2π

1 + z2

1− z e
i(x+xL)p+y−+ixDp

+(y−1 −y
−
2 ) 2παs

Nc
θ(−y−2 )θ(y− − y−1 )

× (−)

{
CA
2

~kT · ( ~kT − ~̀
T )

`2T ( ~̀T − ~kT )2
+ CA

~kT · ~̀T
`2T ( ~̀T − ~kT )2

eixDp
+(y−−y−1 )/(1−z)

}
e−ixLp

+y−2 . (54)

It is interesting to note that contributions from the double hard processes or gluon radiation in-

duced by secondary hard scattering and the interferences with hard-soft processes all vanish in the

collinear limit of the secondary scattering with a gluon (kT → 0). What remains is the radiation

spectrum induced by the first hard scattering (photon-quark). As we will show later, combining with

interferences between single and triple scattering in the same collinear limit, it gives the eikonal con-

tribution to the next-to-leading order correction of the single scattering [Eq. (21)] corresponding to

the first term in the collinear expansion in Eq. (29). For finite kT the above radiation spectra exhibit

interesting interference patterns which were discussed in detail by Gyulassy, Lévai and Vitev [8] and

Wiedemann [9] in the framework of the GW static color-screened potential model. In the present
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paper, we want to study their contribution to the higher-twist corrections to the fragmentation

functions.

To complete our calculation we also have to consider all the interferences between single and

triple scattering. These correspond to the asymmetrical-cut diagrams. The right-cut and left-cut

dialgrams in Fig. 4 are just two examples. After similar reorganization of all different processes,

we list in Figs. 10 all the possible right-cut interference diagrams. The contributions from the first

three right-cut diagrams in Fig. 10, which involve double hard scattering, are

H
D

RH =

∫
d`2T

αs
2π

1 + z2

1− z e
i(x+xL)p+y−+ixDp

+(y−1 −y
−
2 ) 2παs

Nc
θ(−y−2 )θ(y−2 − y−1 )

× (−)
~kT · ( ~kT − ~̀

T )

`2T ( ~̀T − ~kT )2

[
CA
2
ei(x

0
D−xD−xL)p+(y−

1
−y−

2
) − CA

2

− CAe
−i(1−z/(1−z))xDp+(y−1 −y

−
2 )
]
e−ixLp

+y−2 , (55)

where x0
D = k2

T/2p
+q−. We have made the variable change kT →−kT in some of the contributions

in order to obtain a more compact form of the final result. The contributions from the two hard-soft

processes in the right-cut diagrams in Fig. 10 are

H
D

RS =

∫
d`2T

αs
2π

1 + z2

1− z e
i(x+xL)p+y−+ixDp

+(y−1 −y
−
2 ) 2παs

Nc
θ(−y−2 )θ(y−2 − y−1 )

× (−)

{
1

`2T

[
CF + CAe

−i(1−z/(1−z))xDp+(y−1 −y
−
2 )
]

−
~̀
T · ( ~̀T − ~kT )

`2T ( ~̀T − ~kT )2

CA
2
eixDp

+y−2 /(1−z)
[
1 + e−i(1−z/(1−z))xDp

+(y−1 −y
−
2 )
]}

. (56)

Similarly, contributions from the left-cut diagrams, which are just the complex conjugates of the

right-cut diagrams in Fig.10, are,

H
D

LH =

∫
d`2T

αs
2π

1 + z2

1− z e
i(x+xL)p+y−+ixDp

+(y−1 −y
−
2 ) 2παs

Nc
θ(y− − y−1 )θ(y−1 − y−2 )

× (−)
~kT · ( ~kT − ~̀

T )

`2T ( ~̀T − ~kT )2

[
CA
2
ei(x

0
D−xD−xL)p+(y−1 −y

−
2 ) − CA

2

− CAe
−i(1−z/(1−z))xDp+(y−1 −y

−
2 )
]
e−ixLp

+(y−−y−1 ) , (57)

H
D
LS =

∫
d`2T

αs
2π

1 + z2

1− z e
i(x+xL)p+y−+ixDp

+(y−1 −y
−
2 ) 2παs

Nc
θ(y− − y−1 )θ(y−1 − y−2 )

× (−)

{
1

`2T

[
CF + CAe

−i(1−z/(1−z))xDp+(y−1 −y
−
2 )
]

−
~̀
T · ( ~̀T − ~kT )

`2T ( ~̀T − ~kT )2

CA
2
eixDp

+(y−−y−1 )/(1−z)
[
1 + e−i(1−z/(1−z))xDp

+(y−1 −y
−
2 )
]}

. (58)

C. Collinear Expansion

Following the procedure of extracting the next-leading-twist contributions to the semi-inclusive

DIS cross section, as outlined in Sec. II B, we now expand the hard part in kT according to Eq. (29).
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To simplify our notation, we factor out all the θ-functions and kT -independent part of H
D

C,R,L(the

sum of all the contributions from central-cut, right-cut or left-cut diagrams) and define

H
D

=

∫
d`2T

αs
2π

1 + z2

1− z e
i(x+xL)p+y−+ixDp

+(y−1 −y
−
2 ) 2παs

Nc

×
[
HD
C θ(−y−2 )θ(y− − y−1 ) −HD

R θ(−y−2 )θ(y−2 − y−1 )−HD
L θ(y

− − y−1 )θ(y−1 − y−2 )
]
. (59)

From Eqs. (51)-(58), we have

H
D

C (kT = 0) = H
D

R (kT = 0) = H
D

L (kT = 0) =
CF
`2T

. (60)

They all come from hard-soft processes. As we have pointed out before, double-hard scattering

processes and their interferences all vanish when kT = 0. Note that the combination of θ-functions,
∫
dy−1 dy

−
2

[
θ(−y−2 )θ(y−2 − y−1 ) + θ(y− − y−1 )θ(y−1 − y−2 )− θ(−y−2 )θ(y− − y−1 )

]

=

∫ y−

0

dy−1

∫ y−
1

0

dy−2 , (61)

is an ordered integral limited by the value of y−. We will refer to any terms that are proportional to

the above combination of θ-functions as contact contributions. Combining with Eqs. (27) and (43),

the first term in the kT expansion in Eq. (59), H
D

(kT = 0), gives the eikonal contribution to the

next-leading-order correction of single scattering in Eq. (21). Such eikonal contributions involving

non-physical gauge fields do not correspond to any physical double scattering. They only make the

final results gauge invariant and can be gauged away. However, we do see the importance of including

all the interferences (right-cut and left-cut diagrams) between single and triple scattering. This is

essentially a special case of the generalized proof of factorization of leading-twist contributions in

DIS [20] where contributions from any number of soft gluon rescatterings can be eikonalized.

The dominant contributions to the double quark-gluon scattering come from the quadratic term

in the kT expansion of H
D

in Eq. (30). We note that these high-twist terms generally involve

two additional spatial integrations with respect to y−1 and y−2 . If no restriction is imposed, these

integrations will only be limited by the nuclear size and thus will produce nuclear enhancement

as compared to DIS with a nucleon target. Because of the rapid oscillation of eixp
+y− , any term

proportional to Eq. (61) that limits the integration over y−1 and y−2 to the value of y− will not

have nuclear enhancement. Neglecting any term that is proportional to Eq. (61) (contact term) and

keeping the leading term when `T → 0, we have

∇2
kTH

D
C |kT=0 =

4CA
`4T

(1− e−ixLp+y−2 )(1− e−ixLp+(y−−y−1 )) +O(xB/Q
2`2T ) ,

∇2
kTH

D
L |kT=0 = 0 +O(xB/Q

2`2T ) ,

∇2
kTH

D
R |kT=0 = 0 +O(xB/Q

2`2T ) . (62)

The four terms in HD
C correspond to hard-soft, double hard scattering and their interferences.

Substituting the above in Eq. (43) and (30), we have the leading contribution to the semi-inclusive

tensor from double quark-gluon scattering with quark fragmentation
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WD,q
µν

dzh
=
∑

q

∫
dxH(0)

µν (xp, q)

∫ 1

zh

dz

z
Dq→h(zh/z)

αs
2π
CA

1 + z2

1− z

×
∫
d`2T
`4T

2παs
Nc

TAqg(x, xL) + (virtual correction) , (63)

where

TAqg(x, xL) =

∫
dy−

2π
dy−1 dy

−
2 e

i(x+xL)p+y− (1− e−ixLp+y−2 )(1 − e−ixLp+(y−−y−1 ))

1
2
〈A|ψ̄q(0) γ+ F +

σ (y−2 )F+σ(y−1 )ψq(y
−)|A〉θ(−y−2 )θ(y−2 − y−1 ) (64)

is the quark-gluon correlation function which essentially contains four independent twist-four parton

matrix elements in a nucleus. Since xL as defined in Eq. (36) depends on `T and z, the matrix element

TAqg(x, xL) has an implicit dependence on z and `T . The contribution from gluon fragmentation is

similarly

WD,g
µν

dzh
=
∑

q

∫
dxH(0)

µν (x, p, q)

∫ 1

zh

dz

z
Dg→h(zh/z)

αs
2π
CA

1 + (1− z)2

z

×
∫
d`2T
`4T

2παs
Nc

TAqg(x, xL) + (virtual correction) . (65)

The above contribution from double quark-gluon scattering is very similar to the next-to-leading

order single scattering in Eq. (21). Even the splitting function has the same form except for the

color factor. The contribution is, however, proportional to the twist-four parton matrix elements.

Since there is not much restriction on the spatial integral, such twist-four matrix elements will give

the nuclear enhancement we are looking for. We will return later for more discussions on the A

dependence of the double scattering contribution.

����
�� ��

���
		 
�

�

 ����
� �� � 	 � � � ���� ��� 	�����
�

�

� �
  
��

� ���
� � �  �

FIG. 11. Diagrams for the virtual correction to single scattering with two possible cuts.

D. Virtual Corrections

So far we have not considered virtual corrections which will ensure the final result to be infrared

safe. The calculation of the virtual correction to the single scattering in Fig. 11 is very similar to

the real correction in Fig. 3. One can easily find,
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dW
S(v)
µν

dzh
= −

∑

q

∫
dxfAq (x)H(0)

µν (x, p, q)Dq→h(zh)

∫ µ2

0

d`2T
`2T

αs
2π

∫ 1

0

dz CF
1 + z2

1− z . (66)

One can see that the integral over z is infrared divergent at z = 1 or zg = 0. However, such

divergency cancels exactly the infrared divergency in Eq. (21) of the radiative contribution to the

single scattering process. The sum is then infrared safe. Using the definition of the +functions [16],

∫ 1

0

dz
F (z)

(1− z)+
≡
∫ 1

0

dz
F (z)− F (1)

1− z (67)

with F (z) being any function which is sufficiently smooth at z = 1, one can rewrite [25] the sum of

radiative and virtual correction [Eq. (26)] in the following form

Dq→h(zh, µ
2) = Dq→h(zh) +

∫ µ2

0

d`2T
`2T

αs
2π

∫ 1

zh

dz

z
[γq→qg(z)Dq→h(zh/z)

+ γq→gq(z)Dg→h(zh/z)] . (68)

The splitting functions are defined as

γq→qg (z) = CF

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]
, (69)

γq→gq (z) = γq→qg (1− z) . (70)

Therefore, with the definition of the +function, the δ-function terms in the splitting functions

take into account the self-energy virtual correction which cancels the infrared divergences from the

radiative processes. The final renormalized quark fragmentation Dq→h(zh, µ
2) satisfies the DGLAP

evolution equations in Eq. (1).

When cast into the DGLAP evolution equation in Eq. (1), the splitting function from the real

correction can be interpreted as the probability for the quark to radiate a gluon with momentum

fraction 1 − z. Then one must also take into account the probability of no gluon radiation in the

evolution to ensure unitarity. Such unitarity requirement gives rise to the same virtual correction as

calculated from the diagram in Fig. 11. In the double scattering case, we will use the same unitarity

requirement to obtain virtual corrections. The virtual contribution to the quark fragmentation in

double scattering processes is, for example,

W
D(v),q
µν

dzh
= −

∑

q

∫
dxH(0)

µν (xp, q)Dq→h(zh)
αs
2π
CA

∫ 1

0

dz
1 + z2

1− z

∫
d`2T
`4T

2παs
Nc

TAqg(x, xL) . (71)

One can single out the infrared divergent part by rewriting the integral

∫ 1

0

dz
1 + z2

1− z T
A
qg(x, xL) = TAqg(x, xL)|z=1

∫ 1

0

dz
2

1− z −∆TAqg(x, `2T ) ,

∆TAqg(x, `2T ) ≡
∫ 1

0

dz
1

1− z
[
2TAqg(x, xL)|z=1 − (1 + z2)TAqg(x, xL)

]
. (72)

The second term is finite since TAqg(x, xL) is a smooth function of z. The first term can be combined

with the radiative contribution in Eq. (63) to cancel the infrared divergency. With the help of the

+function, the final result can be expressed as
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WD,q
µν

dzh
=
∑

q

∫
dxH(0)

µν (xp, q)
2παs
Nc

∫
d`2T
`4T

∫ 1

zh

dz

z
Dq→h(zh/z)

× αs
2π
CA

[
1 + z2

(1− z)+
TAqg(x, xL) + δ(z − 1)∆TAqg(x, `2T )

]
. (73)

Here the implicit z-dependence of TAqg(x, xL) plays an important role in the final result. The above

integrand will be proportional to the splitting function for single scattering in Eq. (69) if one ignores

the z dependence of TAqg(x, xL). Similarly, the final result for contributions from gluon fragmentation

is

WD,g
µν

dzh
=
∑

q

∫
dxH(0)

µν (xp, q)
2παs
Nc

∫
d`2T
`4T

∫ 1

zh

dz

z
Dg→h(zh/z)

× αs
2π
CA

[
1 + (1− z)2

z+
TAqg(x, xL) + δ(z)∆TAqg(x, `2T )

]
, (74)

where we have used the fact that xL in Eq. (36) is invariant under the transform z → 1− z and so

is TAqg(x, xL).
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FIG. 12. The diagrams for leading order quark-quark double scattering.

IV. QUARK-QUARK DOUBLE SCATTERING

We have so far only considered quark-gluon double scattering in a nucleus. After the first photon-

quark hard scattering, the leading quark can also rescatter with another quark from the nucleus.

Such quark-quark double scattering processes also contribute to the semi-inclusive DIS at twist-four.

Unlike quark-gluon rescattering, quark-quark double scattering even contributes at the lowest order

without gluon radiation. At the lowest order there is only one kind of quark-quark double scattering

diagram, as shown in Fig. 12 and its crossing variations. One can easily calculate their contributions

and obtain

dW
D(0)
qqµν

dzh
=
∑

q

∫
dx

∫
dy−

2π
dy−1 dy

−
2 e

ixp+y− 〈A|ψ̄q(0)
γ−

2
ψq(y

−)ψ̄q(y
−
1 )
γ−

2
ψq(y

−
2 )|A〉

× 2παs
Nc

8CF
xB
Q2

H(0)
µν (x, p, q)

{
Dg→h(zh)θ(−y−2 )θ(y− − y−1 )

− Dq→h(zh)
[
θ(y− − y−1 )θ(y−1 − y−2 ) + θ(−y−2 )θ(y−2 − y−1 )

]}
, (75)
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where to combine all the crossing diagram we use the fact that fields on the light-cone commute

with each other [21]. In the above contributions, the term proportional to the gluon fragmentation

function is from the central-cut diagrams while the terms containing quark fragmentation function

are from left and right-cut diagrams (or interferences). Using Eq. (61) and neglecting the contact

term, we have

dW
D(0)
qqµν

dzh
=
∑

q

∫
dxTA(I)

qq (x)
2παs
Nc

8CF
xB
Q2

H(0)
µν (x, p, q) [Dg→h(zh) −Dq→h(zh)] , (76)

where

TA(I)
qq (x) =

∫
dy−

2π
dy−1 dy

−
2 e

ixp+y− 〈A|ψ̄q(0)
γ−

2
ψq(y

−)ψ̄q(y
−
1 )
γ−

2
ψq(y

−
2 )|A〉θ(−y−2 )θ(y− − y−1 ) (77)

is a four-quark matrix element in a nucleus. This twist-four contribution is explicitly suppressed by

1/Q2 as compared to the single scattering case. Such leading-order and high-twist contributions from

quark-quark double scattering essentially mix the quark and gluon fragmentation functions. In this

case, there is no induced radiation and thus no energy loss. However, these contributions will change

the final differential cross section or semi-inclusive spectrum, since quark and gluon fragmentation

functions are different. One thus can consider the case as modification of fragmentation functions

without energy loss. Furthermore, these processes do not change the integrated total cross section.

One can verify this by using the momentum sum rule
∑

h

∫
dzhzhDq,g→h(zh) = 1. This is consistent

with a general theorem that final state interaction will not change the total cross section.
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FIG. 13. An example diagram for next-to-leading order quark-quark double scattering.

We also note that contributions from quark-quark double scattering are free of any divergences,

especially collinear divergency. Therefore, they will not contribute to the QCD evolution of the

effective parton fragmentation functions in the nuclear medium.

To the next order we have to consider radiative corrections to the processes in Fig. 12. In addition

we also have to consider the diagram in Fig. 13. Again, calculations of these diagrams are tedious

but straightforward. Take the diagram in Fig. 13 for example: The pole structure is exactly the same

as the central-cut diagram of quark-gluon double scattering in Fig. 4. The resultant contribution is
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dW
D(1)
Fig.13µν

dzh
=
∑

q

∫ 1

zh

dz

z
Dq→h(zh/z)

∫
d`2T
`2T

αs
2π
CF

1 + z2

(1− z)2

xB
Q2

× 2παs
NC

∫
dxTA(II)

qq (x, xL)H(0)
µν (x, p, q) , (78)

where

TA(II)
qq (x, xL) =

∑

qi

∫
dy−

2π
dy−1 dy

−
2 e

i(x+xL)p+y−(1− e−ixLp+y−2 )(1− e−ixLp+(y−−y−1 ))

× 〈A|ψ̄q(0)
γ−

2
ψq(y

−)ψ̄qi (y
−
1 )
γ−

2
ψqi (y

−
2 )|A〉θ(−y−2 )θ(y− − y−1 ) . (79)

The four terms with different phase factors in the above equation correspond to hard-soft, double

hard and the interferences. Notice that the two diagonal terms are defined exactly the same as

T
A(I)
qq (x). This structure is exactly the same as in the quark-gluon double scattering. However, this

contribution is only proportional to 1/`2T versus 1/`4T in the quark-gluon double scattering. It is thus

suppressed by 1/Q2. This remains to be the case for all quark-quark double scattering processes.

Since we are interested only in the collinear behavior of the gluon radiation processes in order to

study the QCD evolution, we will neglect in this paper all radiative contributions from quark-quark

double scattering. Similarly, contributions proportional to 1/`2T from gluon-gluon double scattering

can also be neglected to this approximation, e.g., in the collinear expansion in Eq. (62).

V. MODIFIED QUARK FRAGMENTATION FUNCTION

For a complete result of the semi-inclusive cross section of DIS off a nucleus, one should also

include the higher-twist contribution to the quark distributions and their QCD evolution as studied

by Mueller and Qiu [26]. Here we will simply replace the leading-twist quark distributions fAq (x) by

f̃Aq (x, µ2
I) which contains nuclear modification to the quark distributions and their QCD evolution

and µ2
I is the factorization scale for the quark distributions in a nucleus. We should note that even

the leading-twist quark distributions fAq (x) in a nucleus are different from A free nucleons [fNq (x)].

A. Modified Evolution Equations

Including the higher-twist contributions to the quark distributions and summing up all the leading

contributions from single and double scattering processes in Eqs. (68), (73) and (74), we have

dWµν

dzh
=
∑

q

∫
dxf̃Aq (x, µ2

I)H
(0)
µν (x, p, q)D̃q→h(zh, µ

2) (80)

as the total semi-inclusive tensor in DIS off a nucleus up to twist-four corrections. We define the

modified effective quark fragmentation function as

D̃q→h(zh, µ
2) ≡ Dq→h(zh, µ

2) +

∫ µ2

0

d`2T
`2T

αs
2π

∫ 1

zh

dz

z

[
∆γq→qg(z, x, xL, `

2
T )Dq→h(zh/z)

+ ∆γq→gq(z, x, xL, `
2
T )Dg→h(zh/z)

]
, (81)
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where Dq→h(zh, µ
2) is given in Eq. (68) for leading-twist contributions and

∆γq→qg(z, x, xL, `
2
T ) =

[
1 + z2

(1− z)+
TAqg(x, xL) + δ(1− z)∆TAqg(x, `2T )

]
CA2παs

`2TNcf̃
A
q (x, µ2

I)
(82)

∆γq→gq(z, x, xL, `
2
T ) = ∆γq→qg(1− z, x, xL, `2T ). (83)

The twist-four matrix element TAqg(x, xL) is given in Eq. (64) and ∆TAqg(x, `2T ) is given in Eq. (72).

We should emphasize here that the factorized form of the semi-inclusive tensor in Eq.(80) only

serves to define the effective quark fragmentation function D̃q→h(zh, µ
2). Such a modified fragmen-

tation function for final state particle production has an explicit dependence on the initial parton

distribution through the high-twist double scattering processes. Therefore, the factorization for

semi-inclusive processes in DIS is broken explicitly at twist-four correction. This is a natural conse-

quence of the non-vanishing parton energy loss at twist-four when the leading quark suffers multiple

scattering through the nuclear medium.

Taking the derivative with respect to the collinear factorization scale µ2, we obtain the modified

DGLAP evolution equation in leading order of αs for the modified quark fragmentation function,

∂D̃q→h(zh, µ
2)

∂ lnµ2
=
αs
2π

∫ 1

zh

dz

z

[
γ̃q→qg(z, x, xL, µ

2)D̃q→h(zh/z, µ
2)

+ γ̃q→gq(z, x, xL, µ
2)Dg→h(zh/z, µ

2)
]
. (84)

The modified splitting functions are defined as

γ̃q→qg(z, x, xL, µ
2) = γq→qg (z) + ∆γq→qg(z, x, xL, µ

2) (85)

γ̃g→gq(z, x, xL, µ
2) = γ̃q→qg (1− z, x, xL, µ2), (86)

where γq→qg (z) given in Eq. (69) is the splitting function in single scattering processes. If one

only considers single-jet events in DIS, the gluon fragmentation function does not contribute in the

leading order. Before we carry out similar calculations for the higher-twist correction to the DGLAP

evolution of the gluon fragmentation functions, we may assume that the gluon fragmentation function

which enters into the above equation follows the normal DGLAP evolution,

∂Dg→h(zh, µ
2)

∂ lnµ2
=
αs
2π

∫ 1

zh

dz

z




2nf∑

q=1

γg→qq̄(z)D̃q→h(zh/z, µ
2) + γg→gg(z)Dg→h(zh/z, µ

2)


 , (87)

where the normal splitting functions are

γg→qq̄ =
1

2
[z2 + (1− z)2] , (88)

γg→gg = 2CA

[
z

(1− z)+
+

1− z
z

+ z(1− z) 1

12
(11− 2

3
nf )δ(z − 1)

]
, (89)

and nf is the number of quark flavors. All the fragmentation functions obey the momentum sum

rule,

∫ 1

0

dz
∑

h

z Da→h(z, µ2) = 1 . (90)
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One can check that the modified quark fragmentation function D̃q→h(z, µ2) in Eq. (81) still satisfies

the momentum sum rule. Such a momentum sum rule might seem count-intuitive since there is

momentum transfer of xLp
+ to the fragmentating quark from the second partons in the nucleus in

the double-hard processes. However, one should note that the initial quark from the nucleus carries

momentum xBp
+ in this case. In single scattering and hard-soft processes, however, the initial

quark carries momentum (xB + xL)p+. So the total momentum transfer from the nucleus to the

quark is the same in both single and double scattering. The momentum sum rule for the modified

fragmentation functions should still be valid.

Compared to Eq. (1), the renormalization equation for the modified quark fragmentation function

in Eq. (84) is similar to the original DGLAP evolution equation for the fragmentation functions in

vacuum. However, the modified splitting functions γ̃ [Eq. (85)] have an extra term ∆γ from induced

gluon radiation. Similarly to the ordinary parton cascade in vacuum, the induced radiation will

soften the modified quark fragmentation function. As we have argued in the Introduction, such

softening will be the only experimentally measurable consequence of quark energy loss in a medium.

Another important difference between the modified and the original DGLAP evolution equations is

that the induced splitting function ∆γ depends on the twist-four parton matrix elements TAqg(x, xL)

of the nucleus. Because of the interferences between hard-soft and double-hard processes, TAqg(x, xL)

explicitly manifests the LPM effect which modifies the gluon radiation spectra such that the induced

splitting functions are also modified from their form in vacuum. The induced splitting functions also

explicitly depend on the factorization scale µ.

B. Twist-four Parton Matrix Elements

As we have observed, modified DGLAP evolution equations for parton fragmentation functions

depend on both the parton distribution f̃Aq (x, µ2
I) and two-parton correlation functions TAqg(x, xL).

Naturally, they are essential to any numerical solution to the modified DGLAP evolution equations

for the fragmentation functions. One also has to know them, especially their dependence on the

nuclear size, in order to have any numerical estimate of the effective quark energy loss.

As defined in Eq. (64), the parton correlation function TAqg(x, xL) essentially contains four inde-

pendent twist-four parton matrix elements in a nucleus. They are in principle not calculable and

can only be measured independently in experiments just like parton distributions. However, under

certain assumptions, one might be able to relate the parton correlation functions to single parton

distributions in the nuclei and in the meantime obtain the A-dependence of the parton correlations.

There are four parton field operators and three spatial (in the longitudinal direction) integrations

in TAqg(x, xL). We assume that the nuclear wave function can be expressed as a multiple-nucleon

state and each nucleon is in a color singlet state. In this case, there should not be long range color

correlation between two nucleons due to color confinement. In other words, the interaction between

nucleons inside a nucleus can only be mediated via color-singlet objects. Consider first the case

where the quark and gluon fields operate on different nucleons inside the nucleus. This means that

the double scattering happens with two partons from two different nucleons. Because of the color

confinement, y1 and y2 in Eq. (64) are restricted such that |y1 − y2| ≤ rN , where rN is the radius
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of a nucleon. The integrations over y1 and y2 should, therefore, give the length scale of rNRA,

where RA = 1.12A1/3 is the radius of the nucleus. In this case the correlation functions in Eq. (64)

should be approximately proportional to A4/3. If both the quark and gluon fields operate on the

same nucleon state inside the nucleus, y1 and y2 are both restricted to be within the size of the

nucleon. Then the correlation functions should only be roughly proportional to A. This corresponds

to double scattering with two partons in the same nucleon. As we have discussed before, we will

neglect these contributions because they yield no nuclear enhancement.

Among the four independent matrix elements in TAqg(x, xL), there are two diagonal terms, one

proportional to a phase factor exp[i(x+ xL)p+y− + ixTp
+(y−1 − y−2 )] and another to exp[ixp+y− +

i(xL + xT )p+(y−1 − y−2 )]. The first term corresponds to hard-soft double scattering processes in

which the gluon carrying momentum fraction xT is soft. The second term comes from double-hard

scattering in which the gluon carries large momentum fraction xL+xT . In this paper, we adopt the

approximation used in Ref. [18]. Under such an approximation, one simply relates the two-parton

correlations to the product of two single parton distributions,

∫
dy−

2π
dy−1 dy

−
2 e

ix1p
+y−+ix2p

+(y−1 −y
−
2 ) 1

2 〈A|ψ̄q(0) γ+ F +
σ (y−2 )F+σ(y−1 )ψq(y

−)|A〉θ(−y−2 )θ(y−2 − y−1 )

=
C

xA
fAq (x1)x2f

N
g (x2) , (91)

where xA = 1/MRA, fAq (x) is the quark distribution inside a nucleus as defined in Eq. (14), and

fNg (x) is the gluon distribution inside a nucleon as defined by

fNg (x) ≡ 1

xp+

∫
dy−

2π
eixp

+y− 〈N |F +
σ (0)F+σ(y−)|N 〉 . (92)

C is assumed to be a constant, reflecting the strength of two-parton correlation inside a nucleus. As

we have argued, C should be proportional to the nucleon radius rN , characterizing the confinement

scale. We also assume that the nuclear distribution takes a Gaussian form ρ(r) ∼ exp(−r2/2R2
A).

In terms of the light-cone coordinates, we have then ρ(y−) = ρ0 exp(y−
2
/2R−A

2
) where R−A =√

2RAM/p+ and M is the nucleon mass. The distribution is normalized such that

∫ ∞

0

dy−ρ0e
−y−2

/2R−
A

2

= 1. (93)

With such a distribution, the third integration in Eq. (91) gives
∫
dy−2 ∼ R−A ∼ 1/xAp

+.

In addition to the two diagonal terms, there are also two off-diagonal matrix elements in TAqg(x, xL)

which come from the interferences between hard-soft and double-hard scattering processes. These

two new matrix elements introduced by the interferences have never been studied before in DIS.

Similar matrix elements have been discussed before in the context of pA collisions [27]. For a rough

estimate here, we can generalize the approximation on parton correlations in Ref. [18] to the off-

diagonal matrix elements. As we have pointed out in the calculation of the cut-diagrams in Fig. 4, in

the interferences between double-hard and hard-soft processes, there is actually momentum flow of

xLp
+ between the two nucleons where the initial quark and gluon come from. Without strong long

range two-nucleon correlation inside a nucleus, the amount of momentum flow xLp
+ should then be

restricted by uncertainty principle. Note that the phase factors in the off-diagonal matrix elements
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have an additional factor of exp(±ixLp+y−2 ) relative to their diagonal counterpart. Assuming the

same Gaussian nuclear distribution in light-cone coordinates and using

∫ ∞

0

dy−ρ0e
−y−2

/2R−
A

2±ixLp+y− = e−x
2
L/x

2
A , (94)

we should have a similar approximation for the off-diagonal matrix elements:

∫
dy−

2π
dy−1 dy

−
2 e

ix1p
+y−+ix2p

+(y−1 −y
−
2 )±ixLp+y−2 1

2 〈A|ψ̄q(0) γ+ F +
σ (y−2 )F+σ(y−1 )ψq(y

−)|A〉θ(−y−2 )θ(y−2 − y−1 )

=
C

xA
fAq (x1)x2f

N
g (x2)e−x

2
L/x

2
A . (95)

Relative to the diagonal matrix elements, the off-diagonal ones are suppressed by a factor

exp(−x2
L/x

2
A). Combining all the four terms together, we have

TAqg(x, xL) =
C

xA
[fAq (x + xL)xT f

N
g (xT ) + fAq (x)(xL + xT )fNg (xL + xT )](1− e−x2

L/x
2
A) . (96)

Notice that τf = 1/xLp
+ is the gluon’s formation time. Thus, xL/xA = L−A/τf with L−A = RAM/p+

being the nuclear size in the our chosen frame. It is then clear from the above that the interferences

between double-hard and hard-soft scattering cancel exactly the double scattering contributions for

collinear gluon radiation whose formation time is much larger than the nuclear size. The LPM effect

now explicitly manifests itself via the effective matrix elements in the gluon radiation spectrum that

is induced by double parton scattering.

C. Parton Energy Loss

So far we have derived the modification to the quark fragmentation functions and their DGLAP

evolution equations. Given the twist-four parton matrix elements, one can then solve the modified

DGLAP evolution equations for the modified fragmentation functions. Doing so, one can effectively

resum all the leading-log corrections at twist-four. We leave the numerical solutions to future studies.

In this paper, we instead will formulate the effective energy loss of leading quarks.

In principle the modification of the fragmentation functions would be the only experimental effect

of induced gluon radiation via multiple scattering. One can never directly measure the energy loss

of the leading quark. The net effect of the energy loss is the suppression of leading particles on

one hand and the enhancement of soft particles on the other, leading to the modification of the

fragmentation functions. One can then experimentally characterize the parton energy loss via the

momentum transfer from large to small momentum regions of the fragmentation functions. We will

discuss this in detail when we numerically calculate the modified fragmentation functions.

Upon a close examination of Eq. (81), we see that the first term is the renormalized fragmenta-

tion function in vacuum. The rest are particle production induced by the rescattering of the quark

through the nuclear medium. In particular, the last term is particle production from the fragmen-

tation of the gluon which is induced by the secondary scattering. Such particle production is at the

expense of the energy loss of the leading quark. We can thus quantify the quark energy loss by the

momentum fraction carried by the induced gluon,
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〈∆zg〉(xB , µ2) =

∫ µ2

0

d`2T
`2T

∫ 1

0

dz
αs
2π
z∆γq→gq(z, xB, xL, `

2
T )

=

∫ µ2

0

d`2T
`4T

∫ 1

0

dz[1 + (1− z)2]TAqg(xB , xL)
CAα

2
s

Ncf̃Aq (xB, µ2
I)
. (97)

Using the approximation of the parton correlation functions in Eq. (96) and changing the integration

variable, we have

〈∆zg〉(xB , µ2) =
CAα

2
s

Nc f̃Aq (xB, µ2
I)

xB
xAQ2

C

∫ 1

0

dz
1 + (1− z)2

z(1− z)

∫ xµ

0

dxL
x2
L

(1− e−x2
L/x

2
A)

[fAq (xB + xL)xT f
N
g (xT ) + fAq (xB)(xL + xT )fNg (xL + xT )] , (98)

where xµ = µ2/2p+q−z(1− z) = xB/z(1− z) if we choose the factorization scale as µ2 = Q2.

One can numerically evaluate the above in the future with assumed parton distributions in nuclei.

It is nevertheless interesting to discuss the nuclear dependence of the parton energy. The exponential

factor in the above equation comes from the LPM interferences. It regularizes the integration over

xL which is otherwise divergent. Combining with the QCD radiation spectrum, it also limits the

integration over xL to xL < xA and gives
∫
dxL/x

2
L ∼ 1/xA. The fractional energy loss by the quark

is, therefore, proportional to

〈∆zg〉 ∼
CAα

2
s

Nc

xB
x2
AQ

2
. (99)

Since xA = 1/MRA, the energy loss thus depends quadratically on the nuclear size. The extra size

dependence comes from the combination of the QCD radiation spectrum and the modification of

the available phase space in `T or xL due to the LPM interferences. One also notes that, though

the fractional energy loss is suppressed by 1/Q2 for a fixed value of xB , the total energy loss,

∆E = q−〈∆zg〉, is not.

VI. SUMMARY AND DISCUSSIONS

Working in the framework of generalized factorization of higher-twist parton distributions, we have

studied multiple parton scattering in deeply inelastic eA collisions, in particular the induced gluon

radiation and the resultant modification to the final hadron spectra. We have defined modified

quark fragmentation functions to take into account the effect of multiple parton scattering. We

have presented a detailed derivation of the modified quark fragmentation functions and their QCD

evolution equations to the next-leading-twist. The modification is shown to depend on twist-four

parton matrix elements, both diagonal and off-diagonal, in nuclei.

Depending on whether the gluon radiation is induced by the secondary scattering, one can cate-

gorize the multiple parton scattering as soft or hard, according to the fractional momentum carried

by the secondary parton involved. We have considered both soft and hard scattering and their

interferences. We have shown that these are exactly the so-called LPM interference effect. We have

demonstrated that LPM interferences modify the available phase space in the emitted gluon’s mo-

mentum. Coupled with the gluon spectrum in QCD, this leads to the quadratical dependence of the

modification of fragmentation functions or the effective parton energy loss on the nuclear size RA.

29



We have also considered double-quark scattering processes. Though their contributions to the

QCD evolution equations can be neglected as compared to quark-gluon scattering, they do have

a leading-order contribution which mixes quark and gluon fragmentation functions. Since they

involve quark-antiquark correlations in nuclei, the modification to quark and antiquark fragmentation

functions will be different. This might give different modification to the spectra for negative and

positive hadrons as observed in experiments [28]

There is currently little information on the twist-four parton matrix elements in nuclei, especially

the off-diagonal ones. We have only outlined a very crude estimate, assuming factorization of the

two parton correlations in nuclei. This enables us to estimate the nuclear dependence of the final

results. Future work on this is necessary in order to have any quantitative study of the problem.

With that information, one should be able to numerically solve the QCD evolution equation for the

modified fragmentation functions.

The method we developed here to study the modification of parton fragmentation functions cannot

yet be applied directly to other processes, such as high-energy pA and AA collisions. One can,

however, find important implications from the study in this paper. The A4/3 nuclear size dependence

of the twist-four parton matrix elements relies on the color confinement within the nucleon radius rN .

So the strength of parton correlation as represented by the constant C in Eq. (91) is proportional to

rN . If we replace the nuclear target in DIS by a droplet of quark-gluon plasma, then the integration

over y−1 − y−2 in Eq. (91) is no longer restricted to rN but rather to the effective parton correlation

length 1/µD with µD being the Debye screening mass in the quark-gluon plasma. So the modification

of the parton fragmentation function and the effective parton energy loss will be sensitive to µD. If

there is a dramatic change in the parton correlation during the QCD phase transition, one should

then expect a similar behavior in parton energy loss.
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APPENDIX

In this Appendix we calculate the hard part of gluon radiation processes associated with multiple

quark-gluon scattering in DIS off a nucleus. We use the technique of helicity amplitude for high-

energy parton scattering, where one can neglect the transverse recoil induced by the scattering. The

final results will agree with the complete calculation in the limit of soft radiation. Such an exercise

can help us to cross-check the results of our complete calculation. More importantly, it can help us

to understand the physical processes more clearly on the level of amplitudes and to reorganize the

final results in this paper according to the nature of different processes.
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A. Single Scattering

Assuming the dominant component of a fast quark is `q ≈ [0, `−q ,~0⊥]. One has,

ū(`q , λ)γµu(`′q, λ
′) ≈ 2

√
`−q `
′−
q δλλ′ n

µ , (100)

where n = [0, 1,~0⊥], λ and λ′ are quark helicities. According to the collinear factorization of

the parton matrix elements, each initial quark line contributes u(p) while each initial gluon line

(with Lorentz index σ) contributes pσ to the amplitude. Each initial parton line with momentum

pi = [xip
+, 0, ~kT ] also has a momentum integral dxi/2π with a phase factor exp(−ixip+y−i +i~kT ·~yTi).

We summarize these special Feynman rules for initial parton lines as:

initial quark→ u(p)

∫
dxi
2π

e−ixip
+y−

i
+i~kT ·~yTi ,

initial gluon→ pσ

∫
dxi
2π

e−ixip
+y−i +i~kT ·~yTi . (101)

All the internal and final external parton lines follow the normal Feynman rules.

We will work with an axial gauge A− = 0. The final gluon with momentum ` is assumed to carry

1− z momentum fraction of the struck quark and has polarization ε(`),

` =

[
`2T

2(1− z)q− , (1− z)q
−, ~̀T

]
,

ε(`) =

[
~εT · ~̀T

(1− z)q− , 0,~εT
]
. (102)

According to the above Feynman rules, the amplitude for gluon radiation in the single scattering

case of DIS as shown in Fig. 14(a) is

MS
µ (y) =

∫
dx

2π
ū(xp+ q)γµu(p)M

S
,

M
S

(y) = 2g
~εT · ~̀T
`2T

Tce
−i(xB+xL)p+y− , (103)

where we have used the on-shell condition for the final quark

(xp+ q − `)2 = 2p+q−(x− xB − xL) = 0 , (104)

and assumed soft radiation limit 1 − z → 0. Tc is the color matrix in the adjunct representation

with the color index c for the radiated gluon.

To calculate the hard part of the parton scattering, one can simply take the square of the amplitude

M
S(1)
ν (0)M

S(1)
µ

†
(y), average over the initial quark’s spin, sum over the final gluon’s polarization and

integrate over the final partons’ momenta. One should also average over initial and sum over the final

partons’ color indices. Note that one of integrations over x is carried out by the overall momentum

conservation 2πδ(
∑
xi). In the other integral dx/2π, we absorb the factor 1/2π into the definition

of the parton matrix elements associated with the processes. Following this convention, we have the

hard part of gluon radiation induced by single scattering,
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H
(1)
µν =

∫
dx

1

2
Tr[p · γγµ(xp+ q) · γγν ]2π

δ(x− xB)

2p+q−

×
∫

d2`T
2(2π)3

dz

1− zM
S

(0)M
S†

(y)

=

∫
dxH(0)

µν (x, p, q)
αs
2π

∫
d`2T
`2T

dzCF
2

1− z e
i(x+xL)p+y− . (105)

One can see that the above is the same as the hard part in Eq. (21) in the soft radiation limit z → 1.
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FIG. 14. Gluon radiation from a single scattering (a) and double scattering (b-d) in DIS.

B. Double Scattering

For double scattering processes as shown in Fig. 14(b)-(d), there is one loop-integration which is

carried out by the contour integration around a pole in one of the two propagators. We also assume

that the initial gluon carries transverse momentum kT . The on-shell requirement of the final quark

is

[q + (x+ x1)p+ kT − `]2 = 2zp+q−(x + x1 − xB − xL − xD) = 0 , (106)

where xL and xD are defined in Eq. (36). The kinematics in the process of Fig. 14(b) only allows

one choice of pole. The contour integration around this pole gives

∫
dx

2π

e−ixp
+(y−−y−1 )−i(xB+xL+xD)p+y−1

(xp+ q)2 + iε
=

i

2p+q−
e−ixBp

+y−−i(xL+xD)p+y−1 θ(y− − y−1 ) . (107)

The momentum fraction carried by the initial gluon is then x1 = xL + xD. Since this momentum

fraction is finite when kT = 0, the secondary scattering is considered hard. The final gluon in this

process is from the final state radiation of the secondary scattering. This is what we refer to as

double hard scattering. Using the helicity selection rule in Eq. (100), one can find the amplitude for

the process in Fig. 14(b),

M
D(1)

(y, y1) = 2g
~εT · ~̀T
`2T

TcTa1e
−i(xB+xL)p+y−−ixDp+y−1

× eixLp+(y−−y−1 )igθ(y− − y−1 ) , (108)
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where a1 is the color index of the initial gluon. Note that there should also be an integral over kT .

We have absorbed this together with the transverse phase factor exp(i ~kT · ~y1T ) into the definition

of parton matrix elements.

In the other two diagrams of double scattering in Fig. 14, there are two possible choices of poles.

One choice of poles corresponds to soft rescattering of the final quark [Fig. 14(c)] or of the final

gluon [Fig. 14(d)] where the initial gluon’s momentum fraction x1 = xD [for Fig. 14(c)] or x1 =

−zxD/(1−z) [for Fig. 14(d)] goes to zero for kT = 0. The final gluon is induced by the hard photon-

quark scattering. This is what we call hard-soft double scattering. The second choice however gives

the initial gluon finite momentum x1 = xL + xD and the gluon radiation is from the initial state

radiation of the hard secondary scattering in what we call double-hard scattering. One can find the

amplitudes of these two diagrams as

M
D(2)

(y, y1) = 2g
~εT · ~̀T
`2T

Ta1Tce
−i(xB+xL)p+y−−ixDp+y−1

× [1− eixLp+(y−−y−1 )]igθ(y− − y−1 ) , (109)

M
D(3)

(y, y1) = −2g
~εT · (~̀T − ~kT )

(~̀T − ~kT )2
[Ta1 , Tc]e

−i(xB+xL)p+y−−ixDp+y−1

× [e−ixDp
+(y−−y−1 )/(1−z) − eixLp+(y−−y−1 )]igθ(y− − y−1 ) . (110)

Since the gluon radiation induced by the hard rescattering in these two diagrams is initial state

radiation, the amplitude has the opposite sign with respect to the hard-soft processes where the

gluon is produced by final state radiation of the first hard scattering.

C. Triple Scattering

For gluon radiation associated with triple scattering, there are all together 7 different diagrams

as shown in Fig. 15. we list the amplitudes here:

M
T (1)

(y, y1, y2) = 2g
~εT · ~̀T
`2T

TcTa2Ta1e
−i(xB+xL)p+y−−ix0

Dp
+(y−1 −y

−
2 )

× eixLp+(y−−y−2 )(−g2)θ(y−1 − y−2 )θ(y− − y−1 ) , (111)

M
T (2)

(y, y1, y2) = 2g
~εT · ~̀T
`2T

Ta2TcTa1e
−i(xB+xL)p+y−−ixDp+(y−1 −y

−
2 )

× [eixLp
+(y−−y−1 ) − eixLp+(y−−y−2 )−i(x0

D−xD)p+(y−1 −y
−
2 )]

× (−g2)θ(y−1 − y−2 )θ(y− − y−1 ) , (112)

M
T (3)

(y, y1, y2) = 2g
~εT · ~̀T
`2T

Ta2Ta1Tce
−i(xB+xL)p+y−−ixDp+(y−1 −y

−
2 )

× [1− eixLp+(y−−y−1 )](−g2)θ(y−1 − y−2 )θ(y− − y−1 ) , (113)
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FIG. 15. Gluon radiation from triple scattering in DIS.

M
T (4)

(y, y1, y2) = 2g
~εT · (~̀T − ~kT )

(~̀T − ~kT )2
[Ta2 , Tc]Ta1e

−i(xB+xL)p+y−−ixDp+(y−1 −y
−
2 )

× [e−i(x
0
D−xD)p+(y−1 −y

−
2 )+ixLp

+(y−−y−2 )

− ei(1−z/(1−z))xDp+(y−1 −y
−
2 )+ixLp

+(y−−y−1 )](−g2)θ(y−1 − y−2 )θ(y− − y−1 ) , (114)

M
T (5)

(y, y1, y2) = 2g
~εT · (~̀T − ~kT )

(~̀T − ~kT )2
Ta2 [Ta1 , Tc]e

−i(xB+xL)p+y−−ixDp+(y−1 −y
−
2 )

× [eixLp
+(y−−y−1 ) − e−ixDp+(y−−y−1 )/(1−z)](−g2)θ(y−1 − y−2 )θ(y− − y−1 ) , (115)

M
T (6)

(y, y1, y2) = 2g
~εT · (~̀T − ~kT )

(~̀T − ~kT )2
Ta1 [Ta2 , Tc]e

−i(xB+xL)p+y−−ixDp+(y−1 −y
−
2 )

×
[
eixLp

+(y−−y−1 ) − e−ixDp+(y−−y−1 )/(1−z)
]
ei(1−z/(1−z))xDp

+(y−1 −y
−
2 )

× (−g2)θ(y−1 − y−2 )θ(y− − y−1 ) , (116)
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M
T (7)

(y, y1, y2) = 2g
~εT · ~̀T
~̀2
T

[Ta1 , [Ta2, Tc]]e
−i(xB+xL)p+y−−ixDp+(y−1 −y

−
2 )

× [1− eixLp+(y−−y−1 )]ei(1−z/(1−z))xDp
+(y−1 −y

−
2 )

× (−g2)θ(y−1 − y−2 )θ(y− − y−1 ) . (117)

In M
T (4)

, M
T (6)

and M
T (7)

, where the radiated gluon is coupled to the second initial gluon through

a triple-gluon vertex, we have made variable change kT →−kT .

To obtain these amplitudes, two loop-integrations are carried out by contour integrations around

two poles. For each diagram, there are sometimes two possible choices of the two poles, and con-

sequently two contributions to the amplitude. They represent soft or hard rescattering processes.

However, one of the quark-gluon scatterings must be soft. In Fig. 15(a), for example, the gluon

induced by the third (hard) scattering after the quark has a soft second scattering. Fig 15(b) has

two contributions. One corresponds to gluon radiation induced by the third scattering, the other

by the second scattering. One of the two quark-gluon scatterings must be soft. In Fig 15(c), one

contribution comes from gluon radiation induced by the second scattering followed by soft quark-

gluon scattering. The other contribution corresponds to gluon radiation from the first photon-quark

hard scattering and double soft scattering afterwards. Such analyses of each diagram help us to

reorganize the amplitude according to the physical processes.

D. Soft and Hard Rescattering

We can reorganize all the radiation amplitudes of double and triple scattering according to our

classification of soft and hard rescattering. The total amplitude for the hard-soft double scattering

in Figs. 14(b)-(d), as represented by Fig. 7, is

M
D

S (y, y1) = e−i(xB+xL)p+y−−ixDp+y−1 igθ(y− − y−1 )

× 2g

[
~εT · ~̀T
`2T

Ta1Tc −
~εT · (~̀T − ~kT )

(~̀T − ~kT )2
[Ta1 , Tc]e

−ixDp+(y−−y−1 )/(1−z)
]
. (118)

The amplitude for double hard scattering, as represented by Fig. 8, is,

M
D

H(y, y1) = e−i(xB+xL)p+y−−ixDp+y−1 igθ(y− − y−1 )

× 2g[Tc, Ta1 ]

[
~εT · ~̀T
`2T

− ~εT · (
~̀
T − ~kT )

(~̀T − ~kT )2

]
eixLp

+(y−−y−1 ) . (119)

In triple scattering processes, the gluon radiation can be induced by the initial photon-quark hard

scattering which is then followed by two soft scatterings. We denote the gluon radiation together

with the first soft quark-gluon or gluon-gluon scattering by the effective diagram in Fig. 7. Similarly,

the second soft scattering can be either quark-gluon or gluon-gluon as shown in Fig. 10(d) and (e).

The amplitudes for these two diagrams with double soft scattering are,

M
T
S(1)(y, y1, y2) = e−i(xB+xL)p+y−−ixDp+(y−1 −y

−
2 )(−g2)θ(y−1 − y−2 )θ(y− − y−1 )

× 2g

[
~εT · ~̀T
`2T

Ta2Ta1Tc −
~εT · (~̀T − ~kT )

(~̀T − ~kT )2
Ta2 [Ta1 , Tc]e

−ixDp+(y−−y−1 )/(1−z)
]
, (120)
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M
T

S(2)(y, y1, y2) = e−i(xB+xL)p+y−−ixDp+(y−1 −y
−
2 )(−g2)θ(y−1 − y−2 )θ(y− − y−1 )

× 2g

[
−~εT · (

~̀
T − ~kT )

(~̀T − ~kT )2
Ta1 [Ta2 , Tc]e

−ixDp+(y−−y−1 )/(1−z)

+
~εT · ~̀T
`2T

[Ta1 , [Ta2 , Tc]]

]
ei(1−z/(1−z))xDp

+(y−1 −y
−
2 ) , (121)

where M
T

S(1) is the combination of the first term in M
T (3)

and the second term in M
T (5)

while

M
T

S(2) is the combination of the second term of M
T (6)

and the first term of M
T (7)

.

In hard rescattering, the gluon radiation is induced either by the second or the third scattering.

The amplitude for induced radiation by the third scattering as shown in Fig. 10(c) is

M
T
H(1)(y, y1, y2) = e−i(xB+xL)p+y−−ix0

Dp
+(y−1 −y

−
2 )(−)g2θ(y−1 − y−2 )θ(y− − y−1 )

× 2g[Tc, Ta2 ]Ta1

[
~εT · ~̀T
`2T

− ~εT · (
~̀
T − ~kT )

(~̀T − ~kT )2

]
eixLp

+(y−−y−2 ) . (122)

It is the combination of M
T (1)

, the second term in M
T (2)

, and the first term in M
T (4)

. If the gluon is

induced by the second scattering, the third soft scattering can either be quark-gluon or gluon-gluon

as shown in Figs. 10(a) and (b). Their amplitudes are

M
T

H(2)(y, y1, y2) = e−i(xB+xL)p+y−−ixDp+(y−1 −y
−
2 )(−)g2θ(y−1 − y−2 )θ(y− − y−1 )

× 2gTa2 [Tc, Ta1 ]

[
~εT · ~̀T
`2T

− ~εT · (
~̀
T − ~kT )

(~̀T − ~kT )2

]
eixLp

+(y−−y−1 ) , (123)

M
T

H(3)(y, y1, y2) = e−i(xB+xL)p+y−−ixDp+(y−1 −y
−
2 )(−)g2θ(y−1 − y−2 )θ(y− − y−1 )

× 2g[Ta1 , [Tc, Ta2 ]]

[
~εT · ~̀T
`2T

− ~εT · (
~̀
T − ~kT )

(~̀T − ~kT )2

]
eixLp

+(y−−y−1 )

× ei(1−z/(1−z))xDp+(y−1 −y
−
2 ) , (124)

respectively. Again, M
T
H(2) is the combination of the first term in M

T (2)
, the second term in M

T (3)

and the first term of M
T (5)

. M
T

H(3) is the sum of the second term in M
T (4)

, the first term of M
T (6)

and the second term of M
T (7)

.

With the amplitudes of the re-classified diagrams, we can easily calculate the partonic hard part

of double scattering,

H
D

=

∫
d2`T

2(2π)3

dz

1− z [M
D

(0, y2)M
D†

(y, y1) +M
T

(0, y2, y1)M
S†

(y) +M
S

(0)M
T †

(y, y1, y2)] ,

(125)

which includes both the double scattering and the interferences of triple and single scattering. The

final results are the same as listed in Sec. III B with the splitting functions replaced by their form

in the limit of z → 1.
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